PURDUE UNIVERSITY

Paige Weber (AE), Seth Metcalf (ASM)

Problem

- Current Access System design does not meet industry standards in low ground pressure (LGP) configuration with extra-wide track shoes
- Operator safety while accessing the cab is very important

Background

- Machine Access / Egress System is located on the left hand side of the D8T track-type tractor
- Current design is addressed through risk-assessment but needs improvement in order to meet ISO Standards

Customer Requirements

- Ease of use
- Safety / Reliability
- Fully compliant design
- Robust enough to survive in the field
- Cost of project: less than \$2000

Standards/Safety Requirements

- ISO 2867:2011 Earth-Moving Machinery Access Systems
- Three-point support system needs to be maintained
- Track surfaces are acceptable as part of the access system, if three-point support is provided
- Handholds should be able to withstand a minimum force of 1,000 N applied at any point from any direction without visible permanent deformation

- Steps should be able to withstand a (1) 2,000 N force applied in the most unfavorable positon and (2) a uniformly distributed force of 4,500 N without visible permanent deformation
- Correct use of access system shall be self-evident without special training

Sponsor: Brian Fehrenbacher, Caterpillar Gerald Nuese, Caterpillar

Technical Advisor: Dr. Dabiri

CAPSTONE/SENIOR DESIGN EXPERIENCE 2017 **Caterpillar D8T LGP Machine Access**

Alternative Solutions Mechanically Controlled Ladder

Hinged platform with up and down positon In up positon when bulldozer is moving

• Would eliminate the need for handhold and steps

Hinged Handhold

Hinged handle with up and down position Bolts to location as current design

Bolts to same location as current design Use more material with same design and add more bends

Stirrup Step

- Weld to same location as current design
- Drop step design down lower

Instructors: Dr. Stwalley Dr. Engel

Analysis

- **Creo Parametric Simulate and Finite** Element Analysis were used to model and analyze how the parts of the final design would act under different situations
- Static, Modal, and G-loading tests were analyzed
- Models were compared against the current design parts
- To validate the final design of the handhold, a thicker tubing can be used and an extra plate on the backing of the panel can be added for more stability and will create less stress

Impact on Society / Sustainability

- Implementation provides a safe and fully compliant design
- Safer points of reach that provide stability
- Operator is less likely to sustain injury while accessing the cab

Final Design

- All options were evaluated before choosing the final design of the parts
- Mechanically Controlled Ladder would have been too costly
- Pull Down Handle had moving pieces, would be susceptible to damage from vibration, and would not have been reliable
- Extended Handhold and Stirrup Step met the
- criteria for the ISO Standard constraints
- FEA and modeling results can be used as a tool to
- further develop the machine access / egress system

Economic Analysis

The Machine Access System Senior Design Project used \$24 on material for prototyping. The extra material in the handhold and in the step will create an increase in the production cost of the system comparable to the previous design.

• Estimated Cost of Production: \$100.85 (includes materials of the handhold and step only)

Item	Cost
1" OD ASTM/A53M Pipe Tubing	\$ 76.90
Sand Casting & Steel Material	\$ 15.74
Bending of Handhold	\$ 3.00
Welding of Step	\$ 4.13
Other Machining	\$ 1.08
Total	\$ 100.85

ENGINEERING

PURDUE